Course
     
    Number:
     
    1200410
     
    Course
     
    Path:
     
    Section:
     
    Grades
     
    PreK
     
    to
     
    12
     
    Education
     
    Courses
     
    »
     
    Grade
     
    Group:
     
    Grades
     
    9
     
    to
     
    12
     
    and
     
    Adult
     
    Education
     
    Courses
     
    »
     
    Subject:
     
    Mathematics»
     
    SubSubject:
     
    Algebra
     
    »
     
    Course
     
    Title:
     
    Mathematics
     
    for
     
    College
     
    Success
     
    Course
     
    Section:
     
    Grades
     
    PreK
     
    to
     
    12
     
    Education
     
    Courses
     
    Abbreviated
     
    Title:
     
    Math
     
    Coll.
     
    Success
     
    Number
     
    of
     
    Credits:
     
    .5
     
    Course
     
    Length:
     
    Semester
     
    Course
     
    Type:
     
    Elective
     
    Course
     
    Level:
     
    2
     
    Course
     
    Status:
     
    DRAFT
     ‐
    State
     
    Board
     
    approval
     
    pending
     
    Graduation
     
    Requirements:
     
    Course
     
    Description:
     
    This
     
    course
     
    is
     
    targeted
     
    for
     
    grade
     
    12
     
    students,
     
    whose
     
    test
     
    scores
     
    on
     
    the
     
    Postsecondary
     
    Educational
     
    Readiness
     
    Test
     
    are
     
    below
     
    the
     
    established
     
    cut
     
    scores
     
    for
     
    mathematics,
     
    indicating
     
    that
     
    they
     
    are
     
    not
     
    yet
     
    “college
     
    ready”
     
    in
     
    mathematics.
     
    This
     
    course
     
    incorporates
     
    the
     
    Common
     
    Core
     
    Standards
     
    for
     
    Mathematical
     
    Practices
     
    as
     
    well
     
    as
     
    the
     
    following
     
    Common
     
    Core
     
    Standards
     
    for
     
    Mathematical
     
    Content:
     
    Ratios
     
    and
     
    Proportional
     
    Relationships,
     
    Number
     
    and
     
    Quantities,
     
    Algebra,
     
    Functions,
     
    Expressions
     
    and
     
    Equations,
     
    Geometry,
     
    Statistics,
     
    Real
     
    Number
     
    Systems,
     
    and
     
    the
     
    Common
     
    Core
     
    Standards
     
    for
     
    High
     
    School
     
    Modeling.
     
    The
     
    benchmarks
     
    reflect
     
    the
     
    Florida
     
    College
     
    Competencies
     
    necessary
     
    for
     
    entry
    level
     
    college
     
    courses.
     
    RELATED
     
    BENCHMARKS:
     
    Scheme
     
    Descriptor
     
    MACC.K12.MP
     
    Mathematical
     
    Practices
     
    MACC.K12.MP.1
     
    Make
     
    sense
     
    of
     
    problems
     
    and
     
    persevere
     
    in
     
    solving
     
    them
     
    MACC.K12.MP.2
     
    Reason
     
    abstractly
     
    and
     
    quantitatively
     
    MACC.K12.MP.3
     
    Construct
     
    viable
     
    arguments
     
    and
     
    critique
     
    the
     
    reasoning
     
    of
     
    others
     
    MACC.K12.MP.4
     
    Model
     
    with
     
    mathematics
     
    MACC.K12.MP.5
     
    Use
     
    appropriate
     
    tools
     
    strategically
     
    MACC.K12.MP.6
     
    Attend
     
    to
     
    precision
     
    MACC.K12.MP.7
     
    Look
     
    for
     
    and
     
    make
     
    use
     
    of
     
    structure
     
    MACC.K12.MP.8
     
    Look
     
    for
     
    and
     
    express
     
    regularity
     
    in
     
    repeated
     
    reasoning
     
    MACC.7.EE
     
    Expressions
     
    and
     
    Equations
     
    MACC.7.EE.1
     
    Use
     
    properties
     
    of
     
    operations
     
    to
     
    generate
     
    equivalent
     
    expressions.
     
    MACC.7.EE.1.1
     
    Apply
     
    properties
     
    of
     
    operations
     
    as
     
    strategies
     
    to
     
    add,
     
    subtract,
     
    factor,
     
    and
     
    expand
     
    linear
     
    expressions
     
    with
     
    rational
     
    coefficients.
     
    MACC.7.EE.1.2
     
    Understand
     
    that
     
    rewriting
     
    an
     
    expression
     
    in
     
    different
     
    forms
     
    in
     
    a
     
    problem
     
    context
     
    can
     
    shed
     
    light
     
    on
     
    the
     
    problem
     
    and
     
    how
     
    the
     
    quantities
     
    in
     
    it
     
    are
     
    related.
     
    For
     
    example,
     
    a
     
    +
     
    0.05a
     
    =
     
    1.05a
     
    means
     
    that
     
    “increase
     
    by
     
    5%”
     
    is
     
    the
     
    same
     
    as
     
    “multiply
     
    by
     
    1.05.”
     
    DRAFT
    ?

     
      
     
     
       
         
        
     
        
        
              
         
        
               
       
        
      
       
        
     
                  
                   
                    
                     
                   
      
     
     
             
     
             
          
     
             
        
      
     
       
      
     
             
               
              
     
                
           
     
             
        
        
     
       
      
     
      
     
          
                 
     
     
        
            
                    
                 
     
     
     
     
             
       
       
       
          
        
        
     
         
     
     
      
     
     
     
     
     
           
     
      
     
              
               
     
                 
               
         
    MACC.7.EE.2
     
    Solve
     
    real
    life
     
    and
     
    mathematical
     
    problems
     
    using
     
    numerical
     
    and
     
    algebraic
     
    expressions
     
    and
     
    equations.
     
    MACC.7.EE.2.3
     
    Solve
     
    multi
    step
     
    real
    life
     
    and
     
    mathematical
     
    problems
     
    posed
     
    with
     
    positive
     
    and
     
    negative
     
    rational
     
    numbers
     
    in
     
    any
     
    form
     
    (whole
     
    numbers,
     
    fractions,
     
    and
     
    decimals),
     
    using
     
    tools
     
    strategically.
     
    Apply
     
    properties
     
    of
     
    operations
     
    as
     
    strategies
     
    to
     
    calculate
     
    with
     
    numbers
     
    in
     
    any
     
    form;
     
    convert
     
    between
     
    forms
     
    as
     
    appropriate;
     
    and
     
    assess
     
    the
     
    reasonableness
     
    of
     
    answers
     
    using
     
    mental
     
    computation
     
    and
     
    estimation
     
    strategies.
     
    For
     
    example:
     
    If
     
    a
     
    woman
     
    making
     
    $25
     
    an
     
    hour
     
    gets
     
    a
     
    10%
     
    raise,
     
    she
     
    will
     
    make
     
    an
     
    additional
     
    1/10
     
    of
     
    her
     
    salary
     
    an
     
    hour,
     
    or
     
    $2.50,
     
    for
     
    a
     
    new
     
    salary
     
    of
     
    $27.50.
     
    If
     
    you
     
    want
     
    to
     
    place
     
    a
     
    towel
     
    bar
     
    9
     
    3/4
     
    inches
     
    long
     
    in
     
    the
     
    center
     
    of
     
    a
     
    door
     
    that
     
    is
     
    27
     
    1/2
     
    inches
     
    wide,
     
    you
     
    will
     
    need
     
    to
     
    place
     
    the
     
    bar
     
    about
     
    9
     
    inches
     
    from
     
    each
     
    edge;
     
    this
     
    estimate
     
    can
     
    be
     
    used
     
    as
     
    a
     
    check
     
    on
     
    the
     
    exact
     
    computation.
     
    MACC.7.EE.2.4
     
    Use
     
    variables
     
    to
     
    represent
     
    quantities
     
    in
     
    a
     
    real
    world
     
    or
     
    mathematical
     
    problem,
     
    and
     
    construct
     
    simple
     
    equations
     
    and
     
    inequalities
     
    to
     
    solve
     
    problems
     
    by
     
    reasoning
     
    about
     
    the
     
    quantities.
     
    MACC.7.EE.2.4a
     
    Solve
     
    word
     
    problems
     
    leading
     
    to
     
    equations
     
    of
     
    the
     
    form
     
    px
     
    +
     
    q
     
    =
     
    r
     
    and
     
    p(x
     
    +
     
    q)
     
    =
     
    r
    ,
     
    where
     
    p,
     
    q,
     
    and
     
    r
     
    are
     
    specific
     
    rational
     
    numbers.
     
    Solve
     
    equations
     
    of
     
    these
     
    forms
     
    fluently.
     
    Compare
     
    an
     
    algebraic
     
    solution
     
    to
     
    an
     
    arithmetic
     
    solution,
     
    identifying
     
    the
     
    sequence
     
    of
     
    the
     
    operations
     
    used
     
    in
     
    each
     
    approach.
     
    For
     
    example,
     
    the
     
    perimeter
     
    of
     
    a
     
    rectangle
     
    is
     
    54
     
    cm.
     
    Its
     
    length
     
    is
     
    6
     
    cm.
     
    What
     
    is
     
    its
     
    width?
     
    MACC.7.EE.2.4b
     
    Solve
     
    word
     
    problems
     
    leading
     
    to
     
    inequalities
     
    of
     
    the
     
    form
     
    px
     
    +
     
    q
     
    >
     
    r
     
    or
     
    px
     
    +
     
    q
     
    <
     
    r
    ,
     
    where
     
    p,
     
    q
    ,
     
    and
     
    r
     
    are
     
    specific
     
    rational
     
    numbers.
     
    Graph
     
    the
     
    solution
     
    set
     
    of
     
    the
     
    inequality
     
    and
     
    interpret
     
    it
     
    in
     
    the
     
    context
     
    of
     
    the
     
    problem.
     
    For
     
    example:
     
    As
     
    a
     
    salesperson,
     
    you
     
    are
     
    paid
     
    $50
     
    per
     
    week
     
    plus
     
    $3
     
    per
     
    sale.
     
    This
     
    week
     
    you
     
    want
     
    your
     
    pay
     
    to
     
    be
     
    at
     
    least
     
    $100.
     
    Write
     
    an
     
    inequality
     
    for
     
    the
     
    number
     
    of
     
    sales
     
    you
     
    need
     
    to
     
    make,
     
    and
     
    describe
     
    the
     
    solutions.
     
    MACC.7.G
     
    Geometry
     
    MACC.7.G.1
     
    Draw,
     
    construct,
     
    and
     
    describe
     
    geometrical
     
    figures
     
    and
     
    describe
     
    the
     
    relationships
     
    between
     
    them.
     
    MACC.7.G.1.6
     
    Solve
     
    real
    world
     
    and
     
    mathematical
     
    problems
     
    involving
     
    area,
     
    volume
     
    and
     
    surface
     
    area
     
    of
     
    two
    and
     
    three
    dimensional
     
    objects
     
    composed
     
    of
     
    triangles,
     
    quadrilaterals,
     
    polygons,
     
    cubes,
     
    and
     
    right
     
    prisms.
     
    MACC.7.RP
     
    Ratios
     
    and
     
    Proportional
     
    Relationships
     
    MACC.7.RP.1
     
    Analyze
     
    proportional
     
    relationships
     
    and
     
    use
     
    them
     
    to
     
    solve
     
    real
    world
     
    and
     
    mathematical
     
    problems.
     
    MACC.7.RP.1.1
     
    Compute
     
    unit
     
    rates
     
    associated
     
    with
     
    ratios
     
    of
     
    fractions,
     
    including
     
    ratios
     
    of
     
    lengths,
     
    areas
     
    and
     
    other
     
    quantities
     
    measured
     
    in
     
    like
     
    or
     
    different
     
    units.
     
    For
     
    example,
     
    if
     
    a
     
    person
     
    walks
     
    1/2
     
    mile
     
    in
     
    each
     
    1/4
     
    hour,
     
    compute
     
    the
     
    unit
     
    rate
     
    as
     
    the
     
    complex
     
    fraction
     
    (1/2)/(1/4)
     
    miles
     
    per
     
    hour,
     
    equivalently
     
    2
     
    miles
     
    per
     
    hour.
     
    DRAFT
    ?

     
      
     
     
       
     
       
     
           
     
      
                 
                
     
     
        
          
          
     
     
     
     
     
       
        
       
               
                 
           
     
        
     
          
      
                 
      
     
           
     
     
     
           
     
          
     
      
          
      
     
       
     
          
     
              
      
     
              
     
     
               
        
      
      
      
           
               
            
     
                 
                 
               
      
                 
                 
           
     
            
              
              
              
             
          
     
      
      
     
      
       
    MACC.7.RP.1.2
     
    Recognize
     
    and
     
    represent
     
    proportional
     
    relationships
     
    between
     
    quantities.
     
    MACC.7.RP.1.2a
     
    Decide
     
    whether
     
    two
     
    quantities
     
    are
     
    in
     
    a
     
    proportional
     
    relationship,
     
    e.g.,
     
    by
     
    testing
     
    for
     
    equivalent
     
    ratios
     
    in
     
    a
     
    table
     
    or
     
    graphing
     
    on
     
    a
     
    coordinate
     
    plane
     
    and
     
    observing
     
    whether
     
    the
     
    graph
     
    is
     
    a
     
    straight
     
    line
     
    through
     
    the
     
    origin.
     
    MACC.7.RP.1.2b
     
    Identify
     
    the
     
    constant
     
    of
     
    proportionality
     
    (unit
     
    rate)
     
    in
     
    tables,
     
    graphs,
     
    equations,
     
    diagrams,
     
    and
     
    verbal
     
    descriptions
     
    of
     
    proportional
     
    relationships.
     
    MACC.7.RP.1.2c
     
    Represent
     
    proportional
     
    relationships
     
    by
     
    equations.
     
    For
     
    example,
     
    if
     
    total
     
    cost
     
    t
     
    is
     
    proportional
     
    to
     
    the
     
    number
     
    n
     
    of
     
    items
     
    purchased
     
    at
     
    a
     
    constant
     
    price
     
    p,
     
    the
     
    relationship
     
    between
     
    the
     
    total
     
    cost
     
    and
     
    the
     
    number
     
    of
     
    items
     
    can
     
    be
     
    expressed
     
    as
     
    t
     
    =
     
    pn.
     
    MACC.7.RP.1.2d
     
    Explain
     
    what
     
    a
     
    point
     
    (x,
     
    y)
     
    on
     
    the
     
    graph
     
    of
     
    a
     
    proportional
     
    relationship
     
    means
     
    in
     
    terms
     
    of
     
    the
     
    situation,
     
    with
     
    special
     
    attention
     
    to
     
    the
     
    points
     
    (0,
     
    0)
     
    and
     
    (1,
     
    r
    )
     
    where
     
    r
     
    is
     
    the
     
    unit
     
    rate.
     
    MACC.7.RP.1.3
     
    Use
     
    proportional
     
    relationships
     
    to
     
    solve
     
    multistep
     
    ratio
     
    and
     
    percent
     
    problems.
     
    Examples:
     
    simple
     
    interest,
     
    tax,
     
    markups
     
    and
     
    markdowns,
     
    gratuities
     
    and
     
    commissions,
     
    fees,
     
    percent
     
    increase
     
    and
     
    decrease,
     
    percent
     
    error.
     
    MACC.8.EE
     
    Expressions
     
    and
     
    Equations
     
    MACC.8.EE.1
     
    Work
     
    with
     
    radicals
     
    and
     
    integer
     
    exponents.
     
    MACC.8.EE.1.1
     
    Know
     
    and
     
    apply
     
    the
     
    properties
     
    of
     
    integer
     
    exponents
     
    to
     
    generate
     
    equivalent
     
    numerical
     
    expressions.
     
    For
     
    example,
     
    3
    2
     
    ×
     
    3
    5
     
    =
     
    3
    3
     
    =
     
    1/(3
    3
    )
     
    =
     
    1/27.
     
    MACC.8.EE.1.2
     
    Use
     
    square
     
    root
     
    and
     
    cube
     
    root
     
    symbols
     
    to
     
    represent
     
    solutions
     
    to
     
    equations
     
    of
     
    the
     
    form
     
    x
    2
     
    =
     
    p
     
    and
     
    x
    3
     
    =
     
    p
    ,
     
    where
     
    p
     
    is
     
    a
     
    positive
     
    rational
     
    number.
     
    Evaluate
     
    square
     
    roots
     
    of
     
    small
     
    perfect
     
    squares
     
    and
     
    cube
     
    roots
     
    of
     
    small
     
    perfect
     
    cubes.
     
    Know
     
    that
     √
    2
     
    is
     
    irrational.
     
    MACC.8.EE.1.3
     
    Use
     
    numbers
     
    expressed
     
    in
     
    the
     
    form
     
    of
     
    a
     
    single
     
    digit
     
    times
     
    an
     
    integer
     
    power
     
    of
     
    10
     
    to
     
    estimate
     
    very
     
    large
     
    or
     
    very
     
    small
     
    quantities,
     
    and
     
    to
     
    express
     
    how
     
    many
     
    times
     
    as
     
    much
     
    one
     
    is
     
    than
     
    the
     
    other.
     
    For
     
    example,
     
    estimate
     
    the
     
    population
     
    of
     
    the
     
    United
     
    States
     
    as
     
    3
     
    ×
     
    10
    8
     
    and
     
    the
     
    population
     
    of
     
    the
     
    world
     
    as
     
    7
     
    ×
     
    10
    9
    ,
     
    and
     
    determine
     
    that
     
    the
     
    world
     
    population
     
    is
     
    more
     
    than
     
    20
     
    times
     
    larger.
     
    MACC.8.EE.1.4
     
    Perform
     
    operations
     
    with
     
    numbers
     
    expressed
     
    in
     
    scientific
     
    notation,
     
    including
     
    problems
     
    where
     
    both
     
    decimal
     
    and
     
    scientific
     
    notation
     
    are
     
    used.
     
    Use
     
    scientific
     
    notation
     
    and
     
    choose
     
    units
     
    of
     
    appropriate
     
    size
     
    for
     
    measurements
     
    of
     
    very
     
    large
     
    or
     
    very
     
    small
     
    quantities
     
    (e.g.,
     
    use
     
    millimeters
     
    per
     
    year
     
    for
     
    seafloor
     
    spreading).
     
    Interpret
     
    scientific
     
    notation
     
    that
     
    has
     
    been
     
    generated
     
    by
     
    technology.
     
    MACC.8.EE.2
     
    Understand
     
    the
     
    connections
     
    between
     
    proportional
     
    relationships,
     
    lines,
     
    and
     
    linear
     
    equations.
     
    DRAFT
    ?

     
      
     
     
     
     
            
          
     
     
        
        
     
       
            
        
     
                 
                
       
      
             
                
        
              
     
            
      
     
     
          
                
              
          
        
              
          
     
      
      
     
          
     
            
            
          
     
     
     
         
     
                 
                  
         
      
     
              
     
            
     
             
               
              
     
       
        
           
                 
                    
                  
              
     
     
     
        
      
     
         
         
     
      
            
         
         
      
     
      
            
         
     
    MACC.8.EE.2.5
     
    Graph
     
    proportional
     
    relationships,
     
    interpreting
     
    the
     
    unit
     
    rate
     
    as
     
    the
     
    slope
     
    of
     
    the
     
    graph.
     
    Compare
     
    two
     
    different
     
    proportional
     
    relationships
     
    represented
     
    in
     
    different
     
    ways.
     
    For
     
    example,
     
    compare
     
    a
     
    distance
    time
     
    graph
     
    to
     
    a
     
    distance
    time
     
    equation
     
    to
     
    determine
     
    which
     
    of
     
    two
     
    moving
     
    objects
     
    has
     
    greater
     
    speed.
     
    MACC.8.EE.2.6
     
    Use
     
    similar
     
    triangles
     
    to
     
    explain
     
    why
     
    the
     
    slope
     
    m
     
    is
     
    the
     
    same
     
    between
     
    any
     
    two
     
    distinct
     
    points
     
    on
     
    a
     
    non
    vertical
     
    line
     
    in
     
    the
     
    coordinate
     
    plane;
     
    derive
     
    the
     
    equation
     
    y
     
    =
     
    mx
     
    for
     
    a
     
    line
     
    through
     
    the
     
    origin
     
    and
     
    the
     
    equation
     
    y
     
    =
     
    mx
     
    +
     
    b
     
    for
     
    a
     
    line
     
    intercepting
     
    the
     
    vertical
     
    axis
     
    at
     
    b
    .
     
    MACC.8.EE.3
     
    Analyze
     
    and
     
    solve
     
    linear
     
    equations
     
    and
     
    pairs
     
    of
     
    simultaneous
     
    linear
     
    equations.
     
    MACC.8.EE.3.7
     
    Solve
     
    linear
     
    equations
     
    in
     
    one
     
    variable.
     
    MACC.8.EE.3.7a
     
    Give
     
    examples
     
    of
     
    linear
     
    equations
     
    in
     
    one
     
    variable
     
    with
     
    one
     
    solution,
     
    infinitely
     
    many
     
    solutions,
     
    or
     
    no
     
    solutions.
     
    Show
     
    which
     
    of
     
    these
     
    possibilities
     
    is
     
    the
     
    case
     
    by
     
    successively
     
    transforming
     
    the
     
    given
     
    equation
     
    into
     
    simpler
     
    forms,
     
    until
     
    an
     
    equivalent
     
    equation
     
    of
     
    the
     
    form
     
    x
     
    =
     
    a,
     
    a
     
    =
     
    a,
     
    or
     
    a
     
    =
     
    b
     
    results
     
    (where
     
    a
     
    and
     
    b
     
    are
     
    different
     
    numbers).
     
    MACC.8.EE.3.7b
     
    Solve
     
    linear
     
    equations
     
    with
     
    rational
     
    number
     
    coefficients,
     
    including
     
    equations
     
    whose
     
    solutions
     
    require
     
    expanding
     
    expressions
     
    using
     
    the
     
    distributive
     
    property
     
    and
     
    collecting
     
    like
     
    terms.
     
    MACC.8.F
     
    Functions
     
    MACC.8.F.1
     
    Define,
     
    evaluate,
     
    and
     
    compare
     
    functions.
     
    MACC.8.F.1.1
     
    Understand
     
    that
     
    a
     
    function
     
    is
     
    a
     
    rule
     
    that
     
    assigns
     
    to
     
    each
     
    input
     
    exactly
     
    one
     
    output.
     
    The
     
    graph
     
    of
     
    a
     
    function
     
    is
     
    the
     
    set
     
    of
     
    ordered
     
    pairs
     
    consisting
     
    of
     
    an
     
    input
     
    and
     
    the
     
    corresponding
     
    output.
     
    MACC.8.F.1.2
     
    Compare
     
    properties
     
    of
     
    two
     
    functions
     
    each
     
    represented
     
    in
     
    a
     
    different
     
    way
     
    (algebraically,
     
    graphically,
     
    numerically
     
    in
     
    tables,
     
    or
     
    by
     
    verbal
     
    descriptions).
     
    For
     
    example,
     
    given
     
    a
     
    linear
     
    function
     
    represented
     
    by
     
    a
     
    table
     
    of
     
    values
     
    and
     
    a
     
    linear
     
    function
     
    represented
     
    by
     
    an
     
    algebraic
     
    expression,
     
    determine
     
    which
     
    function
     
    has
     
    the
     
    greater
     
    rate
     
    of
     
    change.
     
    MACC.8.F.1.3
     
    Interpret
     
    the
     
    equation
     
    y
     
    =
     
    mx
     
    +
     
    b
     
    as
     
    defining
     
    a
     
    linear
     
    function,
     
    whose
     
    graph
     
    is
     
    a
     
    straight
     
    line;
     
    give
     
    examples
     
    of
     
    functions
     
    that
     
    are
     
    not
     
    linear.
     
    For
     
    example,
     
    the
     
    function
     
    A
     
    =
     
    s
    2
     
    giving
     
    the
     
    area
     
    of
     
    a
     
    square
     
    as
     
    a
     
    function
     
    of
     
    its
     
    side
     
    length
     
    is
     
    not
     
    linear
     
    because
     
    its
     
    graph
     
    contains
     
    the
     
    points
     
    (1,1),
     
    (2,4)
     
    and
     
    (3,9),
     
    which
     
    are
     
    not
     
    on
     
    a
     
    straight
     
    line.
     
    MACC.8.G
     
    Geometry
     
    MACC.8.G.2
     
    Understand
     
    and
     
    apply
     
    the
     
    Pythagorean
     
    Theorem
     
    MACC.8.G.2.6
     
    Explain
     
    a
     
    proof
     
    of
     
    the
     
    Pythagorean
     
    Theorem
     
    and
     
    its
     
    converse.
     
    MACC.8.G.2.7
     
    Apply
     
    the
     
    Pythagorean
     
    Theorem
     
    to
     
    determine
     
    unknown
     
    side
     
    lengths
     
    in
     
    right
     
    triangles
     
    in
     
    real
    world
     
    and
     
    mathematical
     
    problems
     
    in
     
    two
     
    and
     
    three
     
    dimensions.
     
    MACC.8.G.2.8
     
    Apply
     
    the
     
    Pythagorean
     
    Theorem
     
    to
     
    find
     
    the
     
    distance
     
    between
     
    two
     
    points
     
    in
     
    a
     
    coordinate
     
    system.
     
    DRAFT
    ?

     
      
     
     
      
        
     
        
     
     
              
              
     
         
     
        
               
      
      
      
      
         
                 
              
      
     
              
          
     
              
       
     
     
      
           
     
                 
     
            
         
     
              
     
              
     
     
              
             
          
        
          
       
     
     
               
         
           
         
     
         
     
              
      
                 
               
               
          
                
           
            
              
         
     
    MACC.912.A
    APR
     
    Arithmetic
     
    with
     
    Polynomials
     
    and
     
    Rational
     
    Expressions
     
    MACC.912.A
    APR.1
     
    Perform
     
    arithmetic
     
    operations
     
    on
     
    polynomials
     
    MACC.912.A
    APR.1.1
     
    Understand
     
    that
     
    polynomials
     
    form
     
    a
     
    system
     
    analogous
     
    to
     
    the
     
    integers,
     
    namely,
     
    they
     
    are
     
    closed
     
    under
     
    the
     
    operations
     
    of
     
    addition,
     
    subtraction,
     
    and
     
    multiplication;
     
    add,
     
    subtract,
     
    and
     
    multiply
     
    polynomials.
     
    MACC.912.A
    APR.4
     
    Rewrite
     
    rational
     
    expressions
     
    MACC.912.A
    APR.4.6
     
    Rewrite
     
    simple
     
    rational
     
    expressions
     
    in
     
    different
     
    forms;
     
    write
     
    a(x)/b(x)
     
    in
     
    the
     
    form
     
    q(x)
     
    +
     
    r(x)/b(x),
     
    where
     
    a(x),
     
    b(x),
     
    q(x),
     
    and
     
    r(x)
     
    are
     
    polynomials
     
    with
     
    the
     
    degree
     
    of
     
    r(x)
     
    less
     
    than
     
    the
     
    degree
     
    of
     
    b(x),
     
    using
     
    inspection,
     
    long
     
    division,
     
    or,
     
    for
     
    the
     
    more
     
    complicated
     
    examples,
     
    a
     
    computer
     
    algebra
     
    system.
     
    MACC.912.A
    APR.4.7
     
    Understand
     
    that
     
    rational
     
    expressions
     
    form
     
    a
     
    system
     
    analogous
     
    to
     
    the
     
    rational
     
    numbers,
     
    closed
     
    under
     
    addition,
     
    subtraction,
     
    multiplication,
     
    and
     
    division
     
    by
     
    a
     
    nonzero
     
    rational
     
    expression;
     
    add,
     
    subtract,
     
    multiply,
     
    and
     
    divide
     
    rational
     
    expressions.
     
    MACC.912.A
    CED
     
    Creating
     
    Equations*
     
    MACC.912.A
    CED.1
     
    Create
     
    equations
     
    that
     
    describe
     
    numbers
     
    or
     
    relationships*
     
    MACC.912.A
    CED.1.1
     
    Create
     
    equations
     
    and
     
    inequalities
     
    in
     
    one
     
    variable
     
    and
     
    use
     
    them
     
    to
     
    solve
     
    problems.
     
    Include
     
    equations
     
    arising
     
    from
     
    linear
     
    and
     
    quadratic
     
    functions,
     
    and
     
    simple
     
    rational
     
    and
     
    exponential
     
    functions.*
     
    MACC.912.A
    CED.1.2
     
    Create
     
    equations
     
    in
     
    two
     
    or
     
    more
     
    variables
     
    to
     
    represent
     
    relationships
     
    between
     
    quantities;
     
    graph
     
    equations
     
    on
     
    coordinate
     
    axes
     
    with
     
    labels
     
    and
     
    scales.*
     
    MACC.912.A
    CED.1.3
     
    Represent
     
    constraints
     
    by
     
    equations
     
    or
     
    inequalities,
     
    and
     
    by
     
    systems
     
    of
     
    equations
     
    and/or
     
    inequalities,
     
    and
     
    interpret
     
    solutions
     
    as
     
    viable
     
    or
     
    non
    viable
     
    options
     
    in
     
    a
     
    modeling
     
    context.
     
    For
     
    example,
     
    represent
     
    inequalities
     
    describing
     
    nutritional
     
    and
     
    cost
     
    constraints
     
    on
     
    combinations
     
    of
     
    different
     
    foods.*
     
    MACC.912.A
    CED.1.4
     
    Rearrange
     
    formulas
     
    to
     
    highlight
     
    a
     
    quantity
     
    of
     
    interest,
     
    using
     
    the
     
    same
     
    reasoning
     
    as
     
    in
     
    solving
     
    equations.
     
    For
     
    example,
     
    rearrange
     
    Ohm’s
     
    law
     
    V
     
    =
     
    IR
     
    to
     
    highlight
     
    resistance
     
    R.*
     
    MACC.912.A
    REI
     
    Reasoning
     
    with
     
    Equations
     
    and
     
    Inequalities
     
    MACC.912.A
    REI.1
     
    Understand
     
    solving
     
    equations
     
    as
     
    a
     
    process
     
    of
     
    reasoning
     
    and
     
    explain
     
    the
     
    reasoning
     
    MACC.912.A
    REI.1.1
     
    Explain
     
    each
     
    step
     
    in
     
    solving
     
    a
     
    simple
     
    equation
     
    as
     
    following
     
    from
     
    the
     
    equality
     
    of
     
    numbers
     
    asserted
     
    at
     
    the
     
    previous
     
    step,
     
    starting
     
    from
     
    the
     
    assumption
     
    that
     
    the
     
    original
     
    equation
     
    has
     
    a
     
    solution.
     
    Construct
     
    a
     
    viable
     
    argument
     
    to
     
    justify
     
    a
     
    solution
     
    method.
     
    MACC.912.A
    REI.1.2
     
    Solve
     
    simple
     
    rational
     
    and
     
    radical
     
    equations
     
    in
     
    one
     
    variable,
     
    and
     
    give
     
    examples
     
    showing
     
    how
     
    extraneous
     
    solutions
     
    may
     
    arise.
     
    MACC.912.A
    REI.2
     
    Solve
     
    equations
     
    and
     
    inequalities
     
    in
     
    one
     
    variable
     
    MACC.912.A
    REI.2.3
     
    Solve
     
    linear
     
    equations
     
    and
     
    inequalities
     
    in
     
    one
     
    variable,
     
    including
     
    equations
     
    with
     
    coefficients
     
    represented
     
    by
     
    letters.
     
    DRAFT
    ?

     
      
     
     
           
     
                  
                
         
     
        
     
         
                
               
     
      
              
        
              
          
                  
      
      
      
      
            
          
         
             
                 
            
     
                 
     
     
      
     
        
     
               
               
      
     
         
     
             
      
     
               
          
     
     
     
     
           
                   
            
                
      
         
             
                
              
               
     
                   
     
      
            
    MACC.912.A
    REI.4
     
    Represent
     
    and
     
    solve
     
    equations
     
    and
     
    inequalities
     
    graphically
     
    MACC.912.A
    REI.4.10
     
    Understand
     
    that
     
    the
     
    graph
     
    of
     
    an
     
    equation
     
    in
     
    two
     
    variables
     
    is
     
    the
     
    set
     
    of
     
    all
     
    its
     
    solutions
     
    plotted
     
    in
     
    the
     
    coordinate
     
    plane,
     
    often
     
    forming
     
    a
     
    curve
     
    (which
     
    could
     
    be
     
    a
     
    line).
     
    MACC.912.A
    SSE
     
    Seeing
     
    Structure
     
    in
     
    Expressions
     
    MACC.912.A
    SSE.1
     
    Interpret
     
    the
     
    structure
     
    of
     
    expressions
     
    MACC.912.A
    SSE.1.1
     
    Interpret
     
    expressions
     
    that
     
    represent
     
    a
     
    quantity
     
    in
     
    terms
     
    of
     
    its
     
    context.*
     
    MACC.912.A
    SSE.1.1a
     
    Interpret
     
    parts
     
    of
     
    an
     
    expression,
     
    such
     
    as
     
    terms,
     
    factors,
     
    and
     
    coefficients.*
     
    MACC.912.A
    SSE.1.1b
     
    Interpret
     
    complicated
     
    expressions
     
    by
     
    viewing
     
    one
     
    or
     
    more
     
    of
     
    their
     
    parts
     
    as
     
    a
     
    single
     
    entity.
     
    For
     
    example,
     
    interpret
     
    P(1+r)
    n
     
    as
     
    the
     
    product
     
    of
     
    P
     
    and
     
    a
     
    factor
     
    not
     
    depending
     
    on
     
    P.*
     
    MACC.912.A
    SSE.1.2
     
    Use
     
    the
     
    structure
     
    of
     
    an
     
    expression
     
    to
     
    identify
     
    ways
     
    to
     
    rewrite
     
    it.
     
    For
     
    example,
     
    see
     
    x
    4
     
     
    y
    4
     
    as
     
    (x
    2
    )
    2
     
     
    (y
    2
    )
    2
    ,
     
    thus
     
    recognizing
     
    it
     
    as
     
    a
     
    difference
     
    of
     
    squares
     
    that
     
    can
     
    be
     
    factored
     
    as
     
    (x
    2
     
     
    y
    2
    )(x
    2
     
    +
     
    y
    2
    ).
     
    MACC.912.A
    SSE.2
     
    Write
     
    expressions
     
    in
     
    equivalent
     
    forms
     
    to
     
    solve
     
    problems
     
    MACC.912.A
    SSE.2.3
     
    Choose
     
    and
     
    produce
     
    an
     
    equivalent
     
    form
     
    of
     
    an
     
    expression
     
    to
     
    reveal
     
    and
     
    explain
     
    properties
     
    of
     
    the
     
    quantity
     
    represented
     
    by
     
    the
     
    expression.*
     
    MACC.912.A
    SSE.2.3a
     
    Factor
     
    a
     
    quadratic
     
    expression
     
    to
     
    reveal
     
    the
     
    zeros
     
    of
     
    the
     
    function
     
    it
     
    defines.*
     
    MACC.912.F
    IF
     
    Interpreting
     
    Functions
     
    MACC.912.F
    IF.3
     
    Analyze
     
    functions
     
    using
     
    different
     
    representations
     
    MACC.912.F
    IF.3.7
     
    Graph
     
    functions
     
    expressed
     
    symbolically
     
    and
     
    show
     
    key
     
    features
     
    of
     
    the
     
    graph,
     
    by
     
    hand
     
    in
     
    simple
     
    cases
     
    and
     
    using
     
    technology
     
    for
     
    more
     
    complicated
     
    cases.*
     
    MACC.912.F
    LE
     
    Linear,
     
    Quadratic,
     
    and
     
    Exponential
     
    Models*
     
    MACC.912.F
    LE.1
     
    Construct
     
    and
     
    compare
     
    linear,
     
    quadratic,
     
    and
     
    exponential
     
    models
     
    and
     
    solve
     
    problems*
     
    MACC.912.F
    LE.1.1b
     
    Recognize
     
    situations
     
    in
     
    which
     
    one
     
    quantity
     
    changes
     
    at
     
    a
     
    constant
     
    rate
     
    per
     
    unit
     
    interval
     
    relative
     
    to
     
    another.*
     
    MACC.912.N
    Q
     
    Quantities*
     
    MACC.912.N
    Q.1
     
    Reason
     
    quantitatively
     
    and
     
    use
     
    units
     
    to
     
    solve
     
    problems.
     
    MACC.912.N
    Q.1.1
     
    Use
     
    units
     
    as
     
    a
     
    way
     
    to
     
    understand
     
    problems
     
    and
     
    to
     
    guide
     
    the
     
    solution
     
    of
     
    multi
    step
     
    problems;
     
    choose
     
    and
     
    interpret
     
    units
     
    consistently
     
    in
     
    formulas;
     
    choose
     
    and
     
    interpret
     
    the
     
    scale
     
    and
     
    the
     
    origin
     
    in
     
    graphs
     
    and
     
    data
     
    displays.*
     
    MACC.912.N
    RN
     
    The
     
    Real
     
    Number
     
    System
     
    MACC.912.N
    RN.1
     
    Extend
     
    the
     
    properties
     
    of
     
    exponents
     
    to
     
    rational
     
    exponents.
     
    MACC.912.N
    RN.1.1
     
    Explain
     
    how
     
    the
     
    definition
     
    of
     
    the
     
    meaning
     
    of
     
    rational
     
    exponents
     
    follows
     
    from
     
    extending
     
    the
     
    properties
     
    of
     
    integer
     
    exponents
     
    to
     
    those
     
    values,
     
    allowing
     
    for
     
    a
     
    notation
     
    for
     
    radicals
     
    in
     
    terms
     
    of
     
    rational
     
    exponents.
     
    For
     
    example,
     
    we
     
    define
     
    5
    1/3
     
    to
     
    be
     
    the
     
    cube
     
    root
     
    of
     
    5
     
    because
     
    we
     
    want
     
    [5
    1/3
    ]
    3
     
    =
     
    5
    [(1/3)
     
    x
     
    3]
     
    to
     
    hold,
     
    so
     
    [5
    1/3
    ]
    3
     
    must
     
    equal
     
    5.
     
    DRAFT
    ?

     
      
     
              
       
                  
                 
                
     
     
       
      
     
       
     
                
             
     
             
       
     
     
     
               
          
      
     
          
              
            
     
    MACC.912.N
    RN.1.2
     
    Rewrite
     
    expressions
     
    involving
     
    radicals
     
    and
     
    rational
     
    exponents
     
    using
     
    the
     
    properties
     
    of
     
    exponents.
     
    MACC.912.N
    RN.1.3
     
    Explain
     
    why
     
    the
     
    sum
     
    or
     
    product
     
    of
     
    rational
     
    numbers
     
    is
     
    rational;
     
    that
     
    the
     
    sum
     
    of
     
    a
     
    rational
     
    number
     
    and
     
    an
     
    irrational
     
    number
     
    is
     
    irrational;
     
    and
     
    that
     
    the
     
    product
     
    of
     
    a
     
    nonzero
     
    rational
     
    number
     
    and
     
    an
     
    irrational
     
    number
     
    is
     
    irrational.
     
    MACC.912.S
    ID
     
    Interpreting
     
    Categorical
     
    and
     
    Quantitative
     
    Data
     
    MACC.912.S
    ID.3
     
    Interpret
     
    linear
     
    models*
     
    MACC.912.S
    ID.3.7
     
    Interpret
     
    the
     
    slope
     
    (rate
     
    of
     
    change)
     
    and
     
    the
     
    intercept
     
    (constant
     
    term)
     
    of
     
    a
     
    linear
     
    model
     
    in
     
    the
     
    context
     
    of
     
    the
     
    data.*
     
    MACC.912.S
    ID.3.8
     
    Compute
     
    (using
     
    technology)
     
    and
     
    interpret
     
    the
     
    correlation
     
    coefficient
     
    of
     
    a
     
    linear
     
    fit.*
     
    Modeling
     
    standards
     
    Modeling
     
    is
     
    best
     
    interpreted
     
    not
     
    as
     
    a
     
    collection
     
    of
     
    isolated
     
    topics
     
    but
     
    rather
     
    in
     
    relation
     
    to
     
    other
     
    standards.
     
    Making
     
    mathematical
     
    models
     
    is
     
    a
     
    Standard
     
    for
     
    Mathematical
     
    Practice,
     
    and
     
    specific
     
    modeling
     
    standards
     
    appear
     
    throughout
     
    the
     
    high
     
    school
     
    standards
     
    indicated
     
    by
     
    a
     
    star
     
    symbol
     
    (*).
     
    DRAFT
    ?

    Back to top